

ST.ANNE’S
COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi. Affiliated to Anna University, Chennai)

Accredited by NAAC

ANGUCHETTYPALAYAM, PANRUTI – 607 106.

ET3491 - EMBEDDED SYSTEMS AND IOT DESIGN

 (FOR III B.E ELECTRONICS AND COMMUNICATION ENGINEERING)

 NAME : ___

 REGISTER NO : ___

 YEAR/SEMESTER: III Year / VI Semester

 PERIOD : FEB 2025 – MAY 2025

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PREPARED BY: Mr. S. BALABASKER, AP/ECE

AS PER ANNA UNIVERSITY (CHENNAI) SYLLABUS

2021 REGULATION

OBSERVATION NOTE

ABOUT OBSERVATION NOTES & PREPARATION OF RECORD

❖ This Observation contains the basic diagrams of the circuits enlisted in the syllabus of the

ET3491 - EMBEDDED SYSTEMS AND IOT DESIGN course, along with the design of

various components of the circuit and controller.

❖ The experiment's aim is also given at the beginning of each experiment. Once the student can

design the circuit as per the circuit diagram, they are supposed to go through the instructions

carefully and do the experiments step by step.

❖ They should note down the readings (observations) and tabulate them as specified.

❖ It is also expected that the students prepare the theory relevant to the experiment referring to

prescribed reference books/journals in advance, and carry out the experiment after understanding

thoroughly the concept and procedure of the experiment.

❖ They should get their observations verified and signed by the staff within two days and prepare &

submit the record of the experiment when they come to the laboratory in the subsequent week.

❖ The record should contain experiment No., Date, Aim, Apparatus required, Theory, Procedure,

and result on one side (i.e., Right-hand side, where rulings are provided) and Circuit diagram,

Design, Model Graphs, Tabulations, and Calculations on the other side (i.e., Left-hand side,

where no rulings are provided)

❖ All the diagrams and table lines should be drawn in pencil

❖ The students are directed to discuss & clarify their doubts with the staff members as and when

required. They are also directed to follow strictly the guidelines specified.

ET3491 - EMBEDDED SYSTEMS AND IOT DESIGN

SYLLABUS

COURSE OBJECTIVES:

❖ Learn the architecture and features of 8051.

❖ Study the design process of an embedded system.

❖ Understand the real–time processing in an embedded system.

❖ Learn the architecture and design flow of IoT.

❖ Build an IoT based system.

LIST OF EXPERIMENTS

Experiments using 8051

1. Programming Arithmetic and Logical Operations in 8051.

2. Generation of Square waveform using 8051.

3. Programming using on – Chip ports in 8051.

4. Programming using Serial Ports in 8051.

5. Design of a Digital Clock using Timers/Counters in 8051.

Experiments using ARM

1. Interfacing ADC and DAC

2. Blinking of LEDs and LCD

3. Interfacing keyboard and Stepper Motor.

Miniprojects for IoT

1. Garbage Segregator and Bin Level Indicator

2. Colour based Product Sorting

3. Image Processing based Fire Detection

4. Vehicle Number Plate Detection

5. Smart Lock System

OUTCOMES:

CO1: Explain the architecture and features of 8051.

CO2: Develop a model of an embedded system.

CO3: List the concepts of real time operating systems.

CO4: Learn the architecture and protocols of IoT.

CO5: Design an IoT based system for any application.

LIST OF EXPERIMENTS

S.No. DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

LIST OF EXPERIMENTS

S.No. DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

INTRODUCTION

TO

KEIL µ VISION 5

INTRODUCTION TO KEIL µ VISION 5 SOFTWARE

The µVision5 IDE is a Windows-based software development platform that

combines a robust editor, project manager, and make facility. µVision5 integrates all tools, including the

C compiler, macro assembler, linker/locator, and HEX file generator. µVision4 helps expedite the

development process of your embedded applications by providing the following:

✓ Full-featured source code editor

✓ Device database for configuring the development tool set

✓ Project manager for creating and maintaining your projects

✓ Integrated make facility for assembling, compiling, and linking your embedded applications

✓ Dialogs for all development tool settings

✓ True integrated source-level Debugger with high-speed CPU and peripheral simulator

✓ Advanced GDI interface for software debugging in the target hardware and for connection to

Keil ULINK

✓ Flash programming utility for downloading the application program into Flash ROM

✓ Links to development tools manuals, device datasheets & users’ guides

The Keil µVision5 IDE offers numerous features and advantages that help you quickly and

successfully develop embedded applications. It is easy to use and guaranteed to help you achieve

your design goals.

The installation steps for Keil software are given below:

1. Double click on Keil µvision4.exe file.

2. Then click on Next.

3. Tick the check box towards to license agreements and click Next.

4. Select Destination folder and click Next.

5. Fill the necessary text boxes and click Next.

6. Finally click on Finish.

Software Flow

First open the icon keil µvision4 and the follow the steps are given below. The menu

bar provides you with menus for editor operations, project maintenance, development tool option settings,

program debugging, external tool control, window selection and manipulation, and on-line help. The

toolbar buttons allow you to rapidly execute µVision4 commands. A Status Bar provides editor and

debugger information. The various toolbars and the status bar can be enabled or disabled from the View

Menu commands.

Creating a New Project

The mentioned procedures will explain the steps required to set up a simple application and to generate a HEX

output.

STEP 1: Go to “Project” and close the current project “Close Project”.

STEP 2: Go to the “Project” and click on “New µvision Project”

STEP 3: A small window will pop up with the name “Create New Project” and can be created and select

destination path.

STEP 4: Create a folder and give a proper name that can be related to the Project.

STEP 5: A small window will pop up with the name “Select Device for Target ‘Target 1’”, and select the data

 base Microchip.

STEP 6: Within the Microchip, select AT895C2.

STEP 7: Add Startup file to the project by clicking “Yes”.

STEP 8: Next go to “File” and click “New”.

STEP 9: There are the three main windows are available in the keil IDE. First one is Project Workspace, the

second one is Editor Window and third one is Output Window.

STEP 10: Can start to write *.asm code on the editor window.

STEP 11: Can save the file, if the program is in “C” save as save as “filename.ASM”.

STEP 12: Add this source file to Group1, Go to the “Project Workspace” drag the +mark “Target 1” in

that right click on “Source Group1” and click on “Add Files to Group “Source Group1””.

STEP 13: A small window will pop up with the name “Add Files to Group Source Group1”, by default, the

Files of type will be in All Files (*.asm). If the program is asm select ASM Source file (*.s,*.src,*.a*).

STEP 14: Then go to “Project” click on “Build Target” or F7. Output window will display related error and warning

messages.

Simulation

Part:
STEP 15: Go to “Project” menu, click on “Rebuild all target Files” and start Debug. From View menu can get

Memory Window and from Peripherals can get I/O ports, Serial etc. For access internal memory type

i:0x_memory location example: i:0x30 and for external and program memory x:0x_memory location,

c:0x_memory location respectively. From Register window we can edit and access the values also.

STEP 16: If Output has to be seen on Port select Peripherals → IO Ports → Select Port

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

1 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXPERIMENTS

USING

8051

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

2 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
8051 Assembly Language program using Keil simulator

DATE

AIM:

To write 8051 Assembly Language Program for an 8-bit addition using Keil simulator and

execute it.

SOFTWARE REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

INTRODUCTION TO 8051 SIMULATORS:

A simulator is software that will execute the program and show the results exactly to the

program running on the hardware, if the programmer finds any errors in the program while

simulating the program in the simulator, he can change the program and re-simulate the code and

get the expected result, before going to the hardware testing. The programmer can confidently

dump the program in the hardware when he simulates his program in the simulator and gets the

expected results.

8051 controller is a most popular 8-bit controller which is used in a large number of

embedded applications and many programmers write programs according to their application. So

testing their programs in the software simulators is a way. Simulators will help the programmer

to understand the errors easily and the time taken for the testing is also decreased.

These simulators are very useful for students because they do need not to build the

complete hardware for testing their program and validate their program very easily in an

interactive way.

List of 8051 Simulators:

The list of simulators is given below with their features:

1. MCU 8051: MCU 8051 is an 8051 simulator that is very simple to use and has an interactive

IDE (Integrated Development Environment). It is developed by Martin Osmera and most

important of all is that it is completely free. There are many features for this IDE they are

✓ It supports both C and assembly language for compilation and simulation

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

3 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

✓ It has an in-built source code editor, graphical notepad, ASCII charts, Assembly symbol

viewer, etc. It also supports several 8051 ICs like at89c51, A89S52, 8051, 8052, etc.

✓ It will support certain electronic simulations like LED, 7segment display, LCD etc. which

will help in giving the output when you interface these things to the hardware directly.

✓ It has tools like hex decimal editors, base converters, special calculator, file converters,

inbuilt hardware programmers, etc.

✓ It has syntax validation, pop base auto-completion etc.

You can download this tool from https://sourceforge.net/projects/mcu8051ide/files/.

2. EDSIM 51: This is a virtual 8051 interfaced with virtual peripherals like 7 segment display,

motor, keypad, UART etc. This simulator is exclusively for students developed by James

Rogers,.

The features of this simulator are

✓ Have virtual peripherals like ADC, DAC with scope to display, comparator etc.

✓ Supports only assembly language

✓ IDE is completely written in JAVA and supports all the OS.

✓ Completely free and with user guide, examples, etc.

You can download this simulator from the https://www.edsim51.com/index.html.

3. 8051 IDE: This simulation software is exclusively for the Windows operating system (98/xp).

The features of this simulator are

✓ Text editor, assembler, and software simulate in one single program.

✓ Has facilities like Breakpoint setter, execute to break point, predefined simulator

watch window, etc.

✓ It is available in both free version and paid version.

You can download this tool from https://www.acebus.com/win8051.htm

4. KEIL µVision: KEIL is the most popular software simulator. It has many features like

interactive IDE and supports both C and assembly languages for compilation and simulation.

You can download and get more information from https://www.keil.com/c51/.

https://www.acebus.com/win8051.htm
https://www.keil.com/c51/

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

4 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

INSTALLATION OF KEIL SOFTWARE

Set up Keil IDE for Programming

Keil µVision IDE is a popular way to program MCUs containing the 8051 architectures. It

supports over 50 microcontrollers and has good debugging tools including logic analyzers and

watch windows.

In this article, we will use the AT89C51ED2 microcontroller, which has:

• 64 KB FLASH ROM

• On-chip EEPROM

• 256 Bytes RAM

• In-System programming for uploading the program

• 3 Timer/counters

• SPI, UART, PWM

The Keil µVision icon.

To start writing a new program, you need to create a new project. Navigate to project —> New

µVision project. Then save the new project in a folder.

After saving the file, a new window will pop up asking you to select your microcontroller.

As discussed, we are using AT89C51/AT89C51ED2/AT89C52, so select this controller under the

Microchip section (as Atmel is now a part of Microchip).

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

5 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Select ‘Yes’ in the next pop-up, as we do not need this file in our project.

Our project workspace is now ready!

From here, we need to create a file where we can write our C code. Navigate to File —> New.

Once the file is created, save it with .c extension in the same project folder.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

6 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Next, we have to add that .c or .asm file to our project workspace. Select Add Existing Files and

then select the created .c or .asm file to get it added.

The workspace and project file are ready.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

7 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select the Device

for the Target.

3. Select the device AT89C51ED2 or. AT89C51 or AT89C52

4. Add Startup file Next go to “File” and click “New”.

5. Write a program on the editor window and save it with .asm extension.

6. Add this source file to Group and click on “Build Target” or F7.

7. Go to debugging mode to see the result of simulation by clicking Run or step run.8.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

8 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

ORG 0000H

CLR C

MOV A, #20H

ADD A, #21H

MOV R0, A

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

9 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

10 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Programming Arithmetic and Logical Operations in 8051

DATE

AIM:

To write and execute the Arithmetic and Logical program using the Keil simulator.

 SOFTWARE TOOLS REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select Device for

the Target.

3. Select the device AT89C51ED2 or AT89C51 or AT89C52

4. Add Startup file Next go to “File” and click “New”.

5. Write a program on the editor window and save it with .asm extension.

6. Add this source file to Group and click on “Build Target” or F7.

7. Go to debugging mode to see the result of simulation by clicking Run or step run.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

11 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

12 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

8-BIT ADDITION

ORG 0000H ; Start of the program

START:

 CLR C ; Clear Carry flag

 MOV A, #1AH ; Load A with 0x0A (10 in decimal)

 ADDC A, #10H ; Add 0x10 (16 in decimal) + Carry

 MOV DPTR, #4500H ; Load DPTR with 0x4500 memory address

 MOVX @DPTR, A ; Store result in external memory 0x4500

L1: SJMP L1 ; Infinite loop

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

13 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

14 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM

8-BIT SUBTRACTION

ORG 0000H ; Start of the program

START: CLR C ; Clear Carry flag (used in SUBB)

 MOV A, #0AH ; Load A with 0x0A (decimal 10)

 SUBB A, #05H ; Subtract 0x05 (decimal 5) from A (A = A - 5 - CY)

 MOV DPTR, #4500H ; Load DPTR with address 0x4500H

 MOVX @DPTR, A ; Store result of subtraction at external memory (XDATA) 0x4500

L1: SJMP L1 ; Infinite loop to hold execution

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

15 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

16 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM

8-BIT MULTIPLICATION

ORG 0000H ; Start of the program

START:

 MOV A, #05H ; Load A with 0x05 (decimal 5)

 MOV B, #03H ; Load B with 0x03 (decimal 3)

 MUL AB ; Multiply A × B (Result stored in A & B)

 MOV DPTR, #4500H ; Load DPTR with address 0x4500H

 MOVX @DPTR, A ; Store the lower byte of the result (A) at 0x4500H

 INC DPTR ; Increment DPTR to 0x4501H

 MOV A, B ; Move higher byte of result (B) to A

 MOVX @DPTR, A ; Store the higher byte at 0x4501H

L1: SJMP L1 ; Infinite loop to hold execution

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

17 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

18 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM

8-BIT DIVISION

ORG 0000H ; Start of the program

START:

 MOV A, #H ; Load A with 0x15 (decimal 21)

 MOV B, #03H0E ; Load B with 0x03 (decimal 3)

 DIV AB ; Divide A by B (A ÷ B)

 MOV DPTR, #4500H ; Load DPTR with address 0x4500H

 MOVX @DPTR, A ; Store the quotient in external memory (XDATA 0x4500)

 INC DPTR ; Increment DPTR to 0x4501H

 MOV A, B ; Move the remainder to A

 MOVX @DPTR, A ; Store the remainder in external memory (XDATA 0x4501)

L1: SJMP L1 ; Infinite loop to hold execution

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

19 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

20 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM

LOGICAL OPERATION

ORG 0000H ; Start of program

START:

 MOV A, #0F0H ; Load A with 1111 0000 (F0H)

 MOV R1, #0AAH ; Load R1 with 1010 1010 (AAH)

 ; Perform AND operation

 ANL A, R1 ; A = A AND R1 (1010 0000)

 MOV DPTR, #4500H

 MOVX @DPTR, A ; Store AND result in memory

 ; Perform OR operation

 ORL A, R1 ; A = A OR R1 (1010 1010)

 INC DPTR

 MOVX @DPTR, A ; Store OR result in memory

 ; Perform XOR operation

 XRL A, R1 ; A = A XOR R1 (0000 0000)

 INC DPTR

 MOVX @DPTR, A ; Store XOR result in memory

 ; Perform NOT (Complement) operation

 MOV A, #55H ; Load A with 0101 0101 (55H)

 CPL A ; Complement A (1010 1010)

 INC DPTR

 MOVX @DPTR, A ; Store NOT result in memory

L1: SJMP L1 ; Infinite loop

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

21 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

22 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Generation of Square waveform using 8051

DATE

AIM:

To write and execute the Generation of Square waveform program using the Keil simulator.

 SOFTWARE TOOLS REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select Device for

the Target.

3. Select the device AT89C51ED2 or AT89C51 or AT89C52

4. Add Startup file Next go to “File” and click “New”.

5. Write a program on the editor window and save it with .asm extension.

6. Add this source file to Group and click on “Build Target” or F7.

7. Go to debugging mode to see the result of simulation by clicking Run or step run.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

23 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

24 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

SQUARE WAVE GENERATION

ORG 0000H ; Start of the program

START:

 MOV P1, #00H ; Clear Port 1 (All pins LOW)

LOOP:

 SETB P1.0 ; Set P1.0 HIGH (1)

 CALL DELAY ; Delay to keep HIGH

 CLR P1.0 ; Clear P1.0 LOW (0)

 CALL DELAY ; Delay to keep LOW

 SJMP LOOP ; Repeat forever

DELAY:

 MOV R7, #255

D1: MOV R6, #255

D2: DJNZ R6, D2

 DJNZ R7, D1

 RET

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

25 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

26 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Programming using on–Chip ports in 8051

DATE

AIM:

To write and execute the Generation of Square waveform program using the Keil simulator.

 SOFTWARE TOOLS REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

THEORY:

Programming the 8051-microcontroller using on-chip ports involves configuring and controlling

its four I/O ports (P0, P1, P2, P3) for input and output operations. The 8051 has 32 general-

purpose I/O pins, divided into four 8-bit ports.

8051 I/O Ports Overview

1. Port 0 (P0.0 - P0.7)

o Dual-purpose: Acts as both I/O and lower address/data bus (AD0–AD7) in external

memory mode.

o Requires external pull-up resistors for I/O operations (open-drain configuration).

2. Port 1 (P1.0 - P1.7)

o Pure I/O port (does not have any alternate function).

o Internal pull-ups available.

3. Port 2 (P2.0 - P2.7)

o Dual-purpose: Acts as both I/O and higher address bus (A8–A15) in external

memory mode.

o Internal pull-ups available.

4. Port 3 (P3.0 - P3.7)

o Multi-functional I/O port, supporting functions like serial communication,

interrupts, and timers.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

27 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Port 3 Alternate Functions

Pin Function

P3.0 RXD (Serial Input)

P3.1 TXD (Serial Output)

P3.2 INT0 (External Interrupt 0)

P3.3 INT1 (External Interrupt 1)

P3.4 T0 (Timer 0 External Input)

P3.5 T1 (Timer 1 External Input)

P3.6 WR (External Memory Write)

P3.7 RD (External Memory Read)

Port Pins Primary Function Alternate Functions

Port 0 P0.0 - P0.7 General I/O (Open-Drain)
Lower Address/Data Bus (AD0 -

AD7) in external memory mode

Port 1 P1.0 - P1.7 General I/O (With internal pull-ups) No alternate function

Port 2 P2.0 - P2.7 General I/O (With internal pull-ups)
Higher Address Bus (A8 - A15) in

external memory mode

Port 3 P3.0 - P3.7 General I/O (With internal pull-ups) Special Functions

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

28 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select Device for

the Target.

3. Select the device AT89C51ED2 or AT89C51 or AT89C52

4. Add Startup file Next, go to “File” and click “New”.

5. Write a program in the editor window and save it with .asm extension.

6. Add this source file to the Group and click on “Build Target” or F7.

7. Go to debugging mode to see the simulation result by clicking Run or step run.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

29 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

30 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

PORT AS OUTPUT (LED BLINKING)

ORG 0000H

START:

 MOV P1, #00H ; Clear Port 1 (All Pins LOW)

LOOP:

 SETB P1.0 ; Turn ON LED (P1.0 = 1)

 CALL DELAY ; Delay

 CLR P1.0 ; Turn OFF LED (P1.0 = 0)

 CALL DELAY ; Delay

 SJMP LOOP ; Repeat forever

DELAY:

 MOV R7, #255

D1: MOV R6, #255

D2: DJNZ R6, D2

 DJNZ R7, D1

 RET

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

31 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

32 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

PORT AS INPUT (SWITCH PRESS DETECTION)

ORG 0000H

START:

 MOV P2, #0FFH ; Configure P2 as Input (Pull-up Mode)

 MOV P1, #00H ; Clear Port 1

LOOP:

 JB P2.0, LED_OFF ; If P2.0 = 1 (Not Pressed), Jump

 SETB P1.0 ; If P2.0 = 0 (Pressed), Turn ON LED

 SJMP LOOP

LED_OFF:

 CLR P1.0 ; Turn OFF LED

 SJMP LOOP

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

33 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

34 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

READING & WRITING DATA ON PORTS

ORG 0000H

START:

 MOV P0, #0FFH ; Configure P0 as Input

 MOV P1, #00H ; Configure P1 as Output

LOOP:

 MOV A, P0 ; Read Data from Port 0

 MOV P1, A ; Send Data to Port 1

 SJMP LOOP ; Repeat

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

35 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

36 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

INTERRUPT

ORG 0000H ; Reset vector location

SJMP START ; Jump to main program

ORG 0003H ; Interrupt vector for External Interrupt 0 (INT0)

AJMP ISR ; Jump to Interrupt Service Routine (ISR)

START:

 MOV P1, #00H ; Initialize Port 1 (LED OFF)

 MOV IE, #81H ; Enable External Interrupt 0 (EX0) (IE = 1000 0001b)

 MOV TCON, #01H ; Set INT0 to falling edge triggered mode (TCON = 0000 0001b)

 SETB P3.2 ; Configure P3.2 as input (External Interrupt 0)

MAIN_LOOP:

 SJMP MAIN_LOOP ; Stay in an infinite loop, waiting for interrupts

ISR:

 CPL P1.0 ; Toggle LED (Complement P1.0)

 RETI ; Return from interrupt

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

37 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

38 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Programming using Serial Ports in 8051.

DATE

AIM:

To write and execute the Serial Port program using the Keil simulator.

 SOFTWARE TOOLS REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select Device for

the Target.

3. Select the device AT89C51ED2 or AT89C51 or AT89C52

4. Add Startup file Next go to “File” and click “New”.

5. Write a program on the editor window and save it with .asm extension.

6. Add this source file to Group and click on “Build Target” or F7.

7. Go to debugging mode to see the result of simulation by clicking Run or step run.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

39 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

40 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

ORG 0000H

 ; Setup Timer1 for Serial Communication (9600 Baud Rate)

 MOV TMOD, #20H ; Timer1 Mode 2 (Auto-Reload), Timer0 Mode 1

 MOV TH1, #0FDH ; Load TH1 for 9600 baud rate (11.0592 MHz Crystal)

 MOV SCON, #50H ; Serial Mode 1, 8-bit data

 SETB TR1 ; Start Timer 1

SEND_LOOP:

 MOV SBUF, #'A' ; Load 'A' into SBUF

WAIT_TX:

 JNB TI, WAIT_TX ; Wait for transmission to complete

 CLR TI ; Clear transmit flag

 CALL TIMER0_DELAY_10S

 SJMP SEND_LOOP ; Repeat transmission

; ******************* 10-Second Timer0 Delay Subroutine *******************

TIMER0_DELAY_10S:

 MOV R7, #20 ; Repeat Timer 0 Overflow 20 times (for ~10s delay)

DELAY_LOOP:

 MOV TMOD, #21H ; Timer0 Mode 1 (16-bit), Timer1 unchanged

 MOV TH0, #3CH ; Load high byte for 50ms delay

 MOV TL0, #0B0H ; Load low byte (Values for 11.0592 MHz)

 SETB TR0 ; Start Timer0

WAIT_TIMER:

 JNB TF0, WAIT_TIMER ; Wait for Timer0 Overflow

 CLR TF0 ; Clear Timer0 Overflow Flag

 CLR TR0 ; Stop Timer0

 DJNZ R7, DELAY_LOOP ; Repeat until 10 seconds complete

 RET ; Return from subroutine

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

41 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

42 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
 Design of a Digital Clock using Timers/Counters in 8051.

DATE

AIM:

To write and execute the Design of a Digital Clock using Timers & Counters

program using the Keil simulator.

 SOFTWARE TOOLS REQUIRED:

S.No Software Requirements Quantity

1 Keil μvision5 IDE 1

PROCEDURE

1. Create a new project, go to “Project” and close the current project “Close Project”.

2. Next, Go to the Project New μVision Project and Create a New Project, Select Device for

the Target.

3. Select the device AT89C51ED2 or AT89C51 or AT89C52

4. Add Startup file Next go to “File” and click “New”.

5. Write a program on the editor window and save it with .asm extension.

6. Add this source file to Group and click on “Build Target” or F7.

7. Go to debugging mode to see the result of simulation by clicking Run or step run.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

43 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

44 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

COUNTERS IN 8051

ORG 0000H

 MOV TMOD, #05H ; Timer0 in Mode 1 (16-bit counter mode)

 SETB TCON.4 ; Set T0 (Enable external counting)

 MOV P1, #00H ; Clear P1 to display count

COUNT_LOOP:

 MOV A, TL0 ; Read lower byte of count

 MOV P1, A ; Display on Port 1

 SJMP COUNT_LOOP ; Repeat

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

45 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

OUTPUT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

46 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM

DESIGN OF A DIGITAL CLOCK USING TIMERS

ORG 0000H

 SJMP MAIN

ORG 0030H

; ===== UART Initialization =====

UART_INIT:

 MOV TMOD, #20H ; Timer1 Mode 2 (8-bit auto-reload)

 MOV TH1, #0FDH ; Baud rate 9600

 MOV SCON, #50H ; Serial Mode 1, 8-bit UART

 SETB TR1 ; Start Timer1

 RET

; ===== Send a character to UART =====

SEND_CHAR:

 MOV SBUF, A ; Move data to UART buffer

WAIT_TX:

 JNB TI, WAIT_TX ; Wait for transmission to complete

 CLR TI ; Clear transmit flag

 RET

; ===== Convert a single-digit number to ASCII & send =====

SEND_DIGIT:

 ADD A, #30H ; Convert 0-9 to ASCII ('0'-'9')

 ACALL SEND_CHAR

 RET

; ===== Convert a two-digit number to ASCII & send =====

SEND_TWO_DIGIT:

 MOV B, #10 ; Set divisor

 DIV AB ; A = Quotient (Tens), B = Remainder (Ones)

 MOV R7, B ; Save ones digit

 ACALL SEND_DIGIT ; Send tens digit

 MOV A, R7 ; Get ones digit

 ACALL SEND_DIGIT ; Send ones digit

 RET

; ===== 1 Second Delay =====

DELAY_1S:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

47 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 MOV R3, #20

DELAY_LOOP:

 MOV R2, #250

 MOV R1, #250

D_LOOP:

 DJNZ R1, D_LOOP

 DJNZ R2, D_LOOP

 DJNZ R3, DELAY_LOOP

 RET

; ===== Main Program =====

MAIN:

 ACALL UART_INIT

 MOV R6, #0 ; Hours (0-23)

 MOV R5, #0 ; Minutes (0-59)

 MOV R4, #0 ; Seconds (0-59)

LOOP:

 ; Send Hours

 MOV A, R6

 ACALL SEND_TWO_DIGIT

 MOV A, #':'

 ACALL SEND_CHAR

 ; Send Minutes

 MOV A, R5

 ACALL SEND_TWO_DIGIT

 MOV A, #':'

 ACALL SEND_CHAR

 ; Send Seconds

 MOV A, R4

 ACALL SEND_TWO_DIGIT

 ; New Line for UART Output

 MOV A, #13 ; Carriage return (CR)

 ACALL SEND_CHAR

 MOV A, #10 ; Line feed (LF)

 ACALL SEND_CHAR

 ; 1 Second Delay

 ACALL DELAY_1S

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

48 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 ; Increment Time Logic

 INC R4

 CJNE R4, #60, LOOP

 MOV R4, #0

 INC R5

 CJNE R5, #60, LOOP

 MOV R5, #0

 INC R6

 CJNE R6, #24, LOOP

 MOV R6, #0

 SJMP LOOP

END

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

49 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

50 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

51 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXPERIMENTS

USING

ARM

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

52 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
INTRODUCTION TO RASPBERRY PI PICO W

DATE

Introduction to Raspberry Pi Pico W:

The Raspberry Pi Pico W is a compact and affordable microcontroller board developed by the

Raspberry Pi Foundation. Building upon the success of the Raspberry Pi Pico, the Pico W variant

brings wireless connectivity to the table, making it an even more versatile platform for embedded

projects. In this article, we will provide a comprehensive overview of the Raspberry Pi Pico W,

highlighting its key features and capabilities.

Features:

• RP2040 microcontroller with 2MB of flash memory

• On-board single-band 2.4GHz wireless interfaces (802.11n)

• Micro USB B port for power and data (and for reprogramming the flash)

• 40 pins 21 mm x 51 mm ‘DIP’ style 1mm thick PCB with 0.1″ through-hole pins, also with

edge castellations

• Exposes 26 multi-function 3.3V general purpose I/O (GPIO)

• 23 GPIO are digital-only, with three also being ADC-capable

• Can be surface mounted as a module

• 3-pin ARM serial wire debug (SWD) port

• Simple yet highly flexible power supply architecture

• Various options for easily powering the unit from micro-USB, external supplies, or batteries

• High quality, low cost, high availability

• Comprehensive SDK, software examples, and documentation

• Dual-core ARM Cortex M0+ at up to 133MHz

• On-chip PLL allows variable core frequency

• 264kByte multi-bank high-performance SRAM

Raspberry Pi Pico W:

The Raspberry Pi Pico W is based on the RP2040 microcontroller, which was designed by

Raspberry Pi in-house. It combines a powerful ARM Cortex-M0+ processor with built-in Wi-Fi

connectivity, opening up many possibilities for IoT projects, remote monitoring, and wireless

communication. The Pico W retains the same form factor as the original Pico, making it compatible

with existing Pico accessories and add-ons.

https://robu.in/product/raspberry-pi-pico-w/?gclid=Cj0KCQjwzdOlBhCNARIsAPMwjbzXn6WCOXImSmetXMkplxjZWdG5nTyFF5FwNbFlNNI3Du9DsTRVl48aAptwEALw_wcB

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

53 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RP2040 Microcontroller:

At the core of the Raspberry Pi Pico W is the RP2040 microcontroller. It features a dual-core ARM

Cortex-M0+ processor running at 133MHz, providing ample processing power for a wide range of

applications. The microcontroller also includes 264KB of SRAM, which is essential for storing and

manipulating data during runtime. Additionally, the RP2040 incorporates 2MB of onboard flash

memory for program storage, ensuring sufficient space for your code and firmware.

Wireless Connectivity:

The standout feature of the Raspberry Pi Pico W is its built-in wireless connectivity. It includes an

onboard Cypress CYW43455 Wi-Fi chip, which supports dual-band (2.4GHz and 5GHz) Wi-Fi

802.11b/g/n/ac. This allows the Pico W to seamlessly connect to wireless networks, communicate

with other devices, and access online services. The wireless capability opens up new avenues for

IoT projects, remote monitoring and control, and real-time data exchange.

GPIO and Peripherals:

Similar to the Raspberry Pi Pico, the Pico W offers a generous number of GPIO pins, providing

flexibility for interfacing with external components and peripherals. It features 26 GPIO pins, of

which 3 are analog inputs, and supports various protocols such as UART, SPI, I2C, and PWM. The

Pico W also includes onboard LED indicators and a micro-USB port for power and data

connectivity.

MicroPython and C/C++ Programming:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

54 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

The Raspberry Pi Pico W can be programmed using MicroPython, a beginner-friendly

programming language that allows for rapid prototyping and development. MicroPython provides a

simplified syntax and high-level abstractions, making it easy for newcomers to get started.

Additionally, the Pico W is compatible with C/C++ programming, allowing experienced developers

to leverage the rich ecosystem of libraries and frameworks available.

Programmable Input/Output (PIO) State Machines:

One of the unique features of the RP2040 microcontroller is the inclusion of Programmable

Input/Output (PIO) state machines. These state machines provide additional processing power and

flexibility for handling real-time data and timing-critical applications. The PIO state machines can

be programmed to interface with custom protocols, generate precise waveforms, and offload tasks

from the main processor, enhancing the overall performance of the system.

Open-Source and Community Support

As with all Raspberry Pi products, the Pico W benefits from the vibrant and supportive Raspberry

Pi community. Raspberry Pi provides extensive documentation, including datasheets, pinout

diagrams, and programming guides, to assist developers in understanding the board’s capabilities.

The community offers forums, online tutorials, and project repositories, allowing users to seek

help, share knowledge, and collaborate on innovative projects.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

55 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

The Raspberry Pi Pico W brings wireless connectivity to the popular Raspberry Pi Pico

microcontroller board. With its powerful RP2040 microcontroller, built-in Wi-Fi chip, extensive

GPIO capabilities, and compatibility with MicroPython and C/C++ programming, the Pico W

offers a versatile and affordable platform for a wide range of embedded projects. Whether you are a

beginner or an experienced developer, the Raspberry Pi Pico W provides a user-friendly and

flexible platform to bring your ideas to life and explore the exciting world of wireless IoT

applications.

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

56 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
INTRODUCTION TO PYTHON PROGRAMMING

DATE

Getting Started with Thonny MicroPython (Python) IDE:

If you want to program your RP2040, ESP32 and ESP8266 with MicroPython firmware, it’s very

handy to use an IDE. you’ll have your first LED blinking using MicroPython and Thonny IDE.

We’ve experimented with several IDEs to program the RP2040, ESP32 and ESP8266 boards using

MicroPython, and Thonny seemed a good choice. Although there are some bugs, it is constantly

being updated and improved.

It allows you to program your RP2040, ESP32 and ESP8266 boards with MicroPython, and it is

compatible with Windows, Mac OS X, and Linux. It even comes installed by default on the

Raspberry Pi OS. Additionally, it’s easy to install, so you shouldn’t have problems with the

installation process.

Alternatively, you may want to check the following compilation of MicroPython-compatible IDEs:

▪ MicroPython IDEs

What is MicroPython?

MicroPython is a Python 3 programming language re-implementation targeted for microcontrollers

and embedded systems. MicroPython is very similar to regular Python. Apart from a few

exceptions, the language features of Python are also available in MicroPython. The most significant

difference between Python and MicroPython is that MicroPython was designed to work under

constrained conditions.

Because of that, MicroPython does not come with the entire pack of standard libraries. It only

includes a small subset of the Python standard libraries, but it includes modules to easily control

and interact with the GPIOs, use Wi-Fi, and other communication protocols.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

57 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Thonny IDE

A) Installing Thonny IDE – Windows PC

Thonny IDE comes installed by default on Raspbian OS that is used with the Raspberry Pi board.

 To install Thonny on your Windows PC, follow the next instructions:

1. Go to https://thonny.org

2. Download the version for Windows and wait a few seconds while it downloads.

3. Run the .exe file.

https://thonny.org/

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

58 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

4. Follow the installation wizard to complete the installation process. You just need to click “Next”.

5. After completing the installation, open Thonny IDE. A window as shown in the following figure

should open.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

59 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

60 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

61 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board

GP16 LED

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

62 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

LED:

from machine import Pin

import time

LED = Pin(15, Pin.OUT)

while True:

 LED.value(1)

 time.sleep(1)

 LED.value(0)

 time.sleep(1)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

63 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

64 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Blinking of LEDs and LCD

DATE

AIM:

To interface the LED and LCD with the Raspberry Pi Pico W.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 Thonny IDE 1

2 Raspberry Pi Pico Development Board 1

3 Jumper Wires few

4 Micro USB Cable 1

5 I2C 16X2 LCD 1

PROCEDURE:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

65 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board

GP5 LED1

GP6 LED2

GP8 LED3

GP9 LED4

GP28 LED5

GP27 LED6

GP26 LED7

GP22 LED8

https://wokwi.com/projects/426591556468307969

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

66 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

LED:

from machine import Pin

import time

Define LED pins

led_pins = [5, 6, 8, 9, 28, 27, 26, 22]

Initialize LEDs as output

leds = [Pin(pin, Pin.OUT) for pin in led_pins]

while True:

 for led in leds:

 led.value(1) # Turn on LED

 time.sleep(0.5) # Delay

 led.value(0) # Turn off LED

 time.sleep(0.5) # Pause before the next cycle

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

67 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board LCD Module

GP0 - SDA

GP1 - SCL

- VCC (Or) 5V VCC / 5V

- GND GND

https://wokwi.com/projects/426591739640935425

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

68 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

LCD:

from machine import I2C, Pin

from time import sleep

from pico_i2c_lcd import I2cLcd

i2c = I2C(0, sda=Pin(0), scl=Pin(1), freq=400000)

I2C_ADDR = i2c.scan()[0]

lcd = I2cLcd(i2c, I2C_ADDR, 2, 16) # 2 rows, 16 columns LCD

while True:

 lcd.clear()

 lcd.move_to(4, 0)

 lcd.putstr("St. Annes")

 lcd.move_to(2, 1)

 lcd.putstr("Engg College")

 sleep(5)

 lcd.clear()

 sleep(1)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

69 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

70 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
Interfacing ADC and DAC

DATE

AIM:

To interface the ADC and DAC with the Raspberry Pi Pico W.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 Thonny IDE 1

2 Raspberry Pi Pico Development Board 1

3 Jumper Wires few

4 Micro USB Cable 1

5 Joystick Module 1

THEORY:

ADC (Analog-to-Digital Converter)

• The Raspberry Pi Pico has three 12-bit ADC channels: ADC0, ADC1, and ADC2.

• The voltage range is 0V to 3.3V.

• It converts analog voltage to a digital value (0 - 4095 for 12-bit resolution).

DAC (Digital-to-Analog Converter)

• The MCP4725 DAC module can be used with the I2C protocol.

• It receives a digital value and outputs an equivalent analog voltage.

• The output voltage is given by:

o 𝑉𝑜𝑢𝑡= 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑉𝑎𝑙𝑢𝑒 × 𝑉𝑟𝑒𝑓

▪ 4095

• where V_ref is typically 3.3V.

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

71 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board Joystick Module

GP26 - Vrx

- VCC (Or) 5V VCC / 5V

- GND GND

https://wokwi.com/projects/426594618555040769

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

72 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

ADC:

from machine import ADC

import time

pot= ADC(26)

VREF = 3.3

while True:

 # Convert to 12-bit (0-4095)

 x_val = pot.read_u16() >> 4

 # Convert ADC value to voltage

 x_voltage = (x_val / 4095) * VREF

 # Print ADC value and voltage

 print(f"X: {x_val} ({x_voltage:.2f}V)")

 time.sleep(0.1)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

73 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board

GP15 LED1

https://wokwi.com/projects/426595147236673537

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

74 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

DAC:

from machine import Pin, PWM

import time

Set up PWM on GP15

pwm = PWM(Pin(15))

pwm.freq(1000) # Set frequency to 1 kHz

while True:

 for duty in range(0, 65536, 5000): # Increase duty cycle

 pwm.duty_u16(duty) # Set duty cycle (0-65535)

 voltage = (duty / 65535) * 3.3 # Convert to voltage

 print(f"PWM Output Voltage: {voltage:.2f}V")

 time.sleep(0.1)

 for duty in range(65535, -1, -5000): # Decrease duty cycle

 pwm.duty_u16(duty)

 voltage = (duty / 65535) * 3.3

 print(f"PWM Output Voltage: {voltage:.2f}V")

 time.sleep(0.1)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

75 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROCEDURE:

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

76 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
 Interfacing keyboard and Stepper Motor

DATE

AIM:

To interface the keyboard and Stepper Motor with the Raspberry Pi Pico W.

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No Hardware & Software Requirements Quantity

1 Thonny IDE 1

2 Raspberry Pi Pico Development Board 1

3 Jumper Wires few

4 Micro USB Cable 1

5 Keyboard Module 1

6 Stepper Module 1

PROCEDURE:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

77 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board Keypad Module

GP1 - C1

GP2 - C2

GP3 - C3

GP4 - C4

GP5 - R1

GP6 - R2

GP7 - R3

GP8 - R4

https://wokwi.com/projects/426596421916272641

PROGRAM:

https://wokwi.com/projects/426596421916272641

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

78 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

KEYPAD:

from machine import Pin

import time # Standard Python time library

Define GPIO pins for columns (inputs with pull-up)

col_pins = [Pin(1, Pin.IN, Pin.PULL_UP),

 Pin(2, Pin.IN, Pin.PULL_UP),

 Pin(3, Pin.IN, Pin.PULL_UP),

 Pin(4, Pin.IN, Pin.PULL_UP)]

Define GPIO pins for rows (outputs)

row_pins = [Pin(5, Pin.OUT),

 Pin(6, Pin.OUT),

 Pin(7, Pin.OUT),

 Pin(8, Pin.OUT)]

Keypad Button Layout

key_map = [["1", "2", "3", "A"],

 ["4", "5", "6", "B"],

 ["7", "8", "9", "C"],

 ["*", "0", "#", "D"]]

def read_keypad():

 for r in range(4):

 row_pins[r].value(0) # Activate row

 for c in range(4):

 if col_pins[c].value() == 0: # Check if key is pressed

 time.sleep(0.02) # Debounce

 while col_pins[c].value() == 0: # Wait for key release

 pass

 row_pins[r].value(1) # Reset row

 return key_map[r][c]

 row_pins[r].value(1) # Reset row

 return None

Main loop

print("--- Keypad Ready ---")

while True:

 key = read_keypad()

 if key:

 print("Pressed:", key)

 time.sleep(0.3) # Debounce delay

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

79 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

Raspberry Pi Pin PICO Development Board

GP12 IN1

GP13 IN2

GP14 IN3

GP15 IN4

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

80 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

STEPPER MOTOR:

from machine import Pin

import time # Use standard time module

Define stepper motor pins

pins = [

 Pin(12, Pin.OUT), # IN1

 Pin(13, Pin.OUT), # IN2

 Pin(14, Pin.OUT), # IN3

 Pin(15, Pin.OUT), # IN4

]

Full-step sequence for the stepper motor

full_step_sequence = [

 [1, 0, 0, 0],

 [0, 1, 0, 0],

 [0, 0, 1, 0],

 [0, 0, 0, 1]

]

while True:

 for step in full_step_sequence:

 for i in range(4): # Loop through 4 motor pins

 pins[i].value(step[i])

 time.sleep(0.01) # Step delay (adjust for speed)

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

81 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Mini Projects

for

Internet of Things

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

82 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

EXP NO:
CLOUD PLATFORM TO LOG THE DATA

DATE

AIM:

To set up a cloud platform to log the data

HARDWARE & SOFTWARE TOOLS REQUIRED:

S.No. Software Requirements Quantity

1 Blynk Platform 1

CLOUD PLATFORM-BLYNK:

Blynk is a smart platform that allows users to create their Internet of Things applications without

the need for coding or electronics knowledge. It is based on the idea of physical programming &

provides a platform to create and control devices where users can connect physical devices to the

Internet and control them using a mobile app.

Setting up Blynk 2.0 Application

To control the LED using Blynk and Raspberry Pi Pico W, you need to create a Blynk project and

set up a dashboard in the mobile or web application. Here’s how you can set up the dashboard:

Step 1: Visit blynk.cloud and create a Blynk account on the Blynk website. Or you can simply

sign in using the registered Email ID.

Step 2: Click on +New Template.

https://blynk.cloud/

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

83 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Step 3: Give any name to the Template such as Raspberry Pi Pico W. Select ‘Hardware Type’ as

Other and ‘Connection Type’ as WiFi.

So a template will be created now.

https://how2electronics.com/wp-content/uploads/2023/02/1-1.jpg
https://how2electronics.com/wp-content/uploads/2023/02/2-1.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

84 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Step 4: Now we need to add a ‘New Device’ now.

Select a New Device from ‘Template’.

https://how2electronics.com/wp-content/uploads/2023/02/3-1.jpg
https://how2electronics.com/wp-content/uploads/2023/02/4-1.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

85 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Select the device from a template that you created earlier and also give any name to the device.

Click on Create.

A new device will be created. You will find the Blynk Authentication Token Here. Copy it as it is

necessary for the code.

https://how2electronics.com/wp-content/uploads/2023/02/5-1.jpg
https://how2electronics.com/wp-content/uploads/2023/02/6-1.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

86 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Step 5: Now go to the dashboard and select ‘Web Dashboard’.

From the widget box drag a switch and place it on the dashboard screen.

https://how2electronics.com/wp-content/uploads/2023/02/7.jpg
https://how2electronics.com/wp-content/uploads/2023/02/8.jpg
https://how2electronics.com/wp-content/uploads/2023/02/9.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

87 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Step 6:

On the switch board click on Settings and here you need to set up the Switch. Give any title to it

and Create Datastream as Virtual Pin.

Configure the switch settings as per the image below and click on create.

Configure the final steps again.

https://how2electronics.com/wp-content/uploads/2023/02/10.jpg
https://how2electronics.com/wp-content/uploads/2023/02/11.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

88 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

With this Blynk dashboard set up, you can now proceed to program the Raspberry Pi Pico W board

to control the LED.

Step 7:

To control the LED with a mobile App or Mobile Dashboard, you also need to setup the Mobile

Phone Dashboard. The process is similarly explained above.

https://how2electronics.com/wp-content/uploads/2023/02/12.jpg

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

89 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

Install the Blynk app on your smartphone The Blynk app is available for iOS and Android.

Download and install the app on your smartphone. then need to set up both the Mobile App and the

Mobile Dashboard in order to control the LED with a mobile device. The process is explained

above.

1. Open Google Play Store App on an android phone

2. Open Blynk.App

3. Log In to your account (using the same email and password)

4. Switch to Developer Mode

5. Find the “Raspberry Pi Pico Pico W” template we created on the web and tap on it

6. Tap on the “Raspberry Pi Pico Pico W” template (this template automatically comes because we

created it on our dashboard).

7. tap on plus icon on the left-right side of the window

8. Add one button Switch

9. Now We Successfully Created an android template

10. it will work similarly to a web dashboard template

RESULT:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

90 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

GARBAGE SEGREGATOR AND BIN LEVEL INDICATOR

ABSTRACT:

The Garbage Segregator and Bin Level Indicator is an IoT-based smart waste management

system designed to enhance efficiency and hygiene in waste disposal. The system integrates an IR

sensor to detect human presence near the bin, triggering a servo motor to automatically open the

lid, providing a touchless experience and reducing physical contact with waste bins.

An ultrasonic sensor placed inside the bin continuously monitors the waste level, ensuring real-

time tracking of bin capacity. The collected data is transmitted to the Blynk IoT platform,

allowing remote monitoring and sending alerts when the bin is full. This feature ensures timely

waste collection, preventing overflow and improving sanitation in public and private spaces.

The system operates autonomously, reducing manual intervention and promoting smart waste

segregation. By integrating IoT technology, it enables efficient waste disposal strategies for smart

cities, commercial spaces, and households. The touchless mechanism further contributes to

public health and safety, especially in high-traffic areas.

This project offers a cost-effective and scalable solution for modern waste management, making

cities cleaner, reducing environmental impact, and supporting sustainable waste management

practices through automation and real-time data monitoring.

HARDWARE REQUIRED:

 Raspberry Pi Pico W – Microcontroller for processing

 IR Sensors – Detect presence of objects in the bin

 Ultrasonic Sensor (HC-SR04) – Measure bin level

 Servo Motors – Control the sorting mechanism

 Blynk IoT Platform – For remote bin level monitoring

 LEDs & Buzzer – Indicate bin status

 Power Supply – Battery or adapter

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

91 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

92 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

from machine import Pin, PWM

import network

import urequests

import utime

Wi-Fi & Blynk Credentials

SSID = "XXXX"

PASSWORD = "XXXX"

BLYNK_AUTH = "XXXX"

Pin Configuration

IR_SENSOR = Pin(16, Pin.IN)

SERVO = PWM(Pin(15))

SERVO.freq(50)

TRIG = Pin(2, Pin.OUT)

ECHO = Pin(3, Pin.IN)

last_fill_percentage = -1 # Stores the last sent bin level

Connect to Wi-Fi

def connect_wifi():

 wlan = network.WLAN(network.STA_IF)

 wlan.active(True)

 wlan.connect(SSID, PASSWORD)

 for _ in range(10):

 if wlan.isconnected():

 print(" Connected to Wi-Fi:", wlan.ifconfig())

 return True

 print(" Connecting to Wi-Fi...")

 utime.sleep(1)

 print(" Wi-Fi Connection Failed")

 return False

Function to control servo

def move_servo(angle):

 duty = int((angle / 180) * 5000 + 1000)

 SERVO.duty_u16(duty)

 utime.sleep(1)

 SERVO.duty_u16(0)

Function to measure distance using Ultrasonic Sensor

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

93 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

def measure_distance():

 TRIG.low()

 utime.sleep_us(2)

 TRIG.high()

 utime.sleep_us(10)

 TRIG.low()

 timeout = utime.ticks_ms() + 500 # 500ms timeout

 while ECHO.value() == 0:

 if utime.ticks_ms() > timeout:

 print(" Ultrasonic sensor timeout - No echo received")

 return 100

 signal_off = utime.ticks_us()

 while ECHO.value() == 1:

 if utime.ticks_ms() > timeout:

 print(" Ultrasonic sensor timeout - Stuck in echo high")

 return 100

 signal_on = utime.ticks_us()

 time_passed = signal_on - signal_off

 distance_cm = (time_passed * 0.0343) / 2

 if distance_cm < 0 or distance_cm > 100:

 print(" Invalid distance reading:", distance_cm)

 return 100

 return distance_cm

Function to send data to Blynk via HTTP API

def send_to_blynk(level):

 global last_fill_percentage # Use global variable to track previous level

 if level != last_fill_percentage: # Send only if value changed

 url = f"https://blynk.cloud/external/api/update?token={BLYNK_AUTH}&V1={level}"

 try:

 print(" Sending data to Blynk:", level)

 response = urequests.get(url, timeout=5) # Set timeout

 response.close()

 print(" Blynk updated:", level)

 last_fill_percentage = level # Update last sent value

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

94 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 except Exception as e:

 print(" Blynk Update Error:", e)

 else:

 print("ℹ️ Bin level unchanged, skipping Blynk update.")

Main Function

def main():

 if not connect_wifi():

 return

 while True:

 print(" Checking IR sensor...")

 if IR_SENSOR.value() == 0:

 print("🗑 Garbage detected! Opening lid...")

 move_servo(90)

 utime.sleep(3)

 move_servo(0)

 print("Lid closed")

 print(" Measuring bin level...")

 bin_level = measure_distance()

 print(" Bin Level:", bin_level, "cm")

 MAX_BIN_HEIGHT = 30

 fill_percentage = max(0, min(100, (100 - ((bin_level / MAX_BIN_HEIGHT) * 100))))

 print(" Bin Fill:", fill_percentage, "%")

 print(" Sending data to Blynk (if changed)...")

 send_to_blynk(int(fill_percentage))

 if fill_percentage >= 80:

 print(" Bin is Full! ")

 print(" Waiting 5 seconds before next cycle...")

 utime.sleep(5)

Run the program

main()

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

95 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

APPLICATIONS:

 Smart Waste Management Systems

 Industrial Waste Segregation

 Automated Waste Disposal in Smart Cities

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

96 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

SMART LOCK SYSTEM

ABSTRACT

The Smart Lock System is an IoT-enabled security solution designed for remote and automated

access control using a Raspberry Pi Pico W and the Blynk IoT platform. The system employs a

12V solenoid lock, controlled via a relay module, to provide a secure and reliable locking

mechanism. Integrated with a Wi-Fi module (ESP8266), the system enables users to lock and

unlock doors remotely via a smartphone application, eliminating the need for physical keys.

When an authorized user sends a command through the Blynk app, the Raspberry Pi Pico W

processes the request and triggers the relay to control the solenoid lock. The system can also be

enhanced with multi-factor authentication methods, such as an RFID module, keypad, or

fingerprint sensor, for additional security. Real-time lock status updates can be monitored through

the IoT dashboard, ensuring transparency and security.

This project finds applications in homes, offices, bank lockers, and smart security systems,

providing enhanced protection against unauthorized access. By integrating IoT technology, it

ensures seamless operation, remote monitoring, and improved security, making it a cost-effective

and scalable solution for modern smart locking systems.

HARDWARE REQUIRED:

 Raspberry Pi Pico W – Main controller

 Solenoid Lock – Electronic locking mechanism

 Relay Module – Control high-power lock circuit

 Blynk IoT Platform – Remote unlocking via smartphone

 Wi-Fi Module (with Pico W) – Remote control

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

97 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

98 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

import network

import time

from machine import Pin

import BlynkLib

WiFi and Blynk Credentials

SSID = "XXXX"

PASSWORD = "XXXX"

BLYNK_AUTH = "Token"

Initialize WiFi

wlan = network.WLAN(network.STA_IF)

wlan.active(True)

Attempt to connect to WiFi

print("Connecting to WiFi...")

wlan.connect(SSID, PASSWORD)

timeout = 10 # Timeout for WiFi connection (10 seconds)

while not wlan.isconnected() and timeout > 0:

 print("Trying to connect...")

 time.sleep(1)

 timeout -= 1

if wlan.isconnected():

 print(" Connected to WiFi:", wlan.ifconfig())

else:

 print(" Failed to connect. Check credentials & signal strength.")

 exit() # Stop the script if WiFi is not connected

Initialize Blynk

blynk = BlynkLib.Blynk(BLYNK_AUTH, server="blynk.cloud", port=80, insecure=True)

Relay connected to GPIO 15

relay = Pin(15, Pin.OUT)

Blynk Virtual Pin Handling

@blynk.on("V0")

def lock_control(value):

 if int(value[0]) == 1:

 relay.value(1) # Lock Open

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

99 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 print(" Door Unlocked")

 else:

 relay.value(0) # Lock Closed

 print(" Door Locked")

Main Loop

while True:

 blynk.run()

APPLICATIONS:

 Home and Office Security

 ATM & Bank Locker Systems

 Hotel Room Lock Systems

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

100 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

COLOUR-BASED PRODUCT SORTING

ABSTRACT

The Colour-Based Product Sorting System is an automated solution designed to classify objects

based on their color, enhancing efficiency in industrial sorting and packaging processes. The

system employs a TCS3200/TCS230 color sensor, which detects the color of an object as it moves

through the system. The detected color is then displayed on an LCD/OLED screen, providing real-

time feedback to users.

A Raspberry Pi Pico W acts as the main controller, processing the color data and triggering a

servo motor to push the object into its respective sorting bin. The system ensures accurate and

high-speed classification, reducing manual effort and human error in sorting operations. The use of

servo motors allows precise movement, making the system adaptable for various industries,

including food processing, pharmaceuticals, recycling, and manufacturing.

By integrating IoT and automation, this project optimizes resource management, increases

productivity, and improves quality control in industrial applications. The system can be further

enhanced with a conveyor belt mechanism, enabling continuous sorting for large-scale operations.

With its ability to provide real-time sorting data and automation, the project offers a cost-effective,

scalable, and efficient solution for modern production lines and material handling systems.

HARDWARE REQUIRED:

 Raspberry Pi Pico W – Main controller

 TCS3200/TCS230 Colour Sensor – Detect object color

 Servo Motors – Push objects into sorting bins

 LCD Display (16x2 or OLED) – Display detected color

 Power Supply – 12V DC Adapter or Battery

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

101 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

TCS3200 Pin Raspberry Pi Pico W Pin

VCC 3.3V

GND GND

S0 GP2

S1 GP3

S2 GP4

S3 GP5

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

102 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

from machine import Pin, PWM

from utime import sleep

TCS3200 Sensor Pins

S0 = Pin(2, Pin.OUT)

S1 = Pin(3, Pin.OUT)

S2 = Pin(4, Pin.OUT)

S3 = Pin(5, Pin.OUT)

OUT = Pin(6, Pin.IN)

IR Sensor Pin (GP10)

IR_SENSOR = Pin(10, Pin.IN, Pin.PULL_UP) # Pull-up enabled

Servo Motor on GPIO 9

servo = PWM(Pin(9))

servo.freq(50) # Set PWM frequency to 50Hz (standard for servos)

Set frequency scaling to 100%

S0.value(1)

S1.value(0)

def read_color():

 """Reads Red, Green, and Blue color frequency from TCS3200"""

 colors = ["Red", "Green", "Blue"]

 values = []

 for i, (s2, s3) in enumerate([(0, 0), (1, 1), (0, 1)]): # Red, Green, Blue

 S2.value(s2)

 S3.value(s3)

 sleep(0.1)

 pulse_time = machine.time_pulse_us(OUT, 1, 100000) # 100ms timeout

 if pulse_time < 0:

 print(f" Error reading {colors[i]} - No valid pulse detected!")

 values.append(9999) # Assign a large value to avoid misinterpretation

 else:

 values.append(pulse_time)

 # Normalize values to avoid negative values

 min_val = min(values)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

103 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 if min_val < 0:

 values = [v - min_val for v in values]

 return values[0], values[1], values[2]

def move_servo(angle):

 """Moves servo to the given angle (0-180)"""

 duty = int((angle / 180) * 5000 + 2500) # Convert angle to PWM duty cycle

 servo.duty_u16(duty)

 sleep(1)

while True:

 if IR_SENSOR.value() == 0: # Object detected (IR sensor goes LOW)

 print("\n Object Detected! Scanning Color...")

 r, g, b = read_color()

 print("Raw Values - Red:", r, "Green:", g, "Blue:", b)

 # Color detection logic

 if r < g and r < b:

 detected_color = "RED"

 move_servo(0) # Move servo to RED position

 elif g < r and g < b:

 detected_color = "GREEN"

 move_servo(90) # Move servo to GREEN position

 elif b < r and b < g:

 detected_color = "BLUE"

 move_servo(180) # Move servo to BLUE position

 else:

 detected_color = "UNKNOWN"

 print(f" Detected Color: {detected_color}")

 sleep(2) # Wait before scanning again

 else:

 print(" Waiting for object...")

 sleep(0.5)

APPLICATIONS:

 Automated Factory Sorting Systems

 Agricultural Sorting (Fruits, Vegetables)

 Pharmaceutical and Chemical Industry Sorting

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

104 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

FIRE DETECTION USING IMAGE PROCESSING

ABSTRACT

The Image Processing-Based Fire Detection System is an IoT-enabled fire monitoring solution

that utilizes OpenCV, Raspberry Pi Pico W, and PySerial to detect fire in real-time and send

alerts. The system employs a camera module connected to a PC or Raspberry Pi, which

continuously captures video frames. The captured images are processed using OpenCV-based

flame detection algorithms, analyzing color intensity and movement patterns to identify fire.

The Raspberry Pi Pico W acts as an IoT-enabled microcontroller, interfacing with external

components such as buzzers, LEDs, and relays to trigger safety mechanisms. Communication

between the PC (running OpenCV) and the Pico W is established via PySerial, allowing the Pico

W to receive fire detection signals and activate appropriate response actions like turning on an

alarm, sending data to the Blynk app, or triggering a fire suppression system.

Once a fire is detected, an alert is sent to the Blynk IoT platform, enabling remote monitoring

and immediate action. This system is ideal for smart homes, industries, and surveillance

systems, providing a cost-effective, scalable, and automated fire detection solution that

minimizes response time and enhances safety.

HARDWARE REQUIRED:

 Raspberry Pi 4 or Raspberry Pi Pico W – Main processor

 Pi Camera / USB Camera – Capture images

 OpenCV Library – Image processing

 ML Model (Optional) – Train on fire detection

 Buzzer & LED – Alert system

 Wi-Fi Module (ESP8266 if using Pico W) – Send alerts

 Cloud Integration (Blynk, Firebase, or MQTT) – Remote notifications

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

105 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

106 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

import cv2

import numpy as np

def detect_fire(frame):

 # Convert frame to HSV color space

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

 # Define fire color range in HSV

 lower_bound = np.array([0, 120, 200], dtype=np.uint8)

 upper_bound = np.array([35, 255, 255], dtype=np.uint8)

 # Threshold the image to extract fire-like regions

 mask = cv2.inRange(hsv, lower_bound, upper_bound)

 # Apply morphological operations to remove noise

 kernel = np.ones((5, 5), np.uint8)

 mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)

 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

 # Find contours of the detected fire

 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

 # Draw bounding boxes around fire regions

 for contour in contours:

 if cv2.contourArea(contour) > 500: # Filter small areas

 x, y, w, h = cv2.boundingRect(contour)

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)

 cv2.putText(frame, "Fire Detected!", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7,

(0, 0, 255), 2)

 return frame

Initialize webcam

cap = cv2.VideoCapture(0)

while cap.isOpened():

 ret, frame = cap.read()

 if not ret:

 break

 processed_frame = detect_fire(frame)

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

107 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 # Display output

 cv2.imshow("Fire Detection", processed_frame)

 # Exit condition

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

APPLICATIONS:

 Fire Safety in Homes & Industries

 Surveillance Systems

 Forest Fire Monitoring

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

108 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

VEHICLE NUMBER PLATE DETECTION

ABSTRACT:

The rapid urbanization and increase in vehicle usage have created the need for automated systems

that can efficiently track and manage vehicle movements. Vehicle Number Plate Detection

(VNPD) is a crucial technology that helps in automating traffic management, parking systems, toll

collection, and security access control. This project focuses on developing a low-cost, efficient,

and real-time number plate detection system using Raspberry Pi Pico W, ESP32-CAM,

OpenCV, and Optical Character Recognition (OCR). The system aims to automatically

capture images of vehicle license plates, process them to extract alphanumeric characters, and

display the detected number on an I2C LCD display connected to the Raspberry Pi Pico W.

The system is designed to reduce manual intervention in tracking vehicles and improve accuracy

in monitoring entry and exit logs. By utilizing OpenCV’s image processing techniques and

Tesseract OCR, the system can accurately identify vehicle numbers under various lighting and

environmental conditions. The extracted number is then sent to the Raspberry Pi Pico W via

Serial Communication (PySerial), where it is displayed on an LCD screen for real-time

monitoring. This system can be implemented in various smart city applications, including

automated toll booths, restricted zone monitoring, and parking lot management.

Apparatus Required:

 Raspberry Pi 4 / Pico W – Main processor

 Pi Camera / USB Camera – Capture vehicle images

 OpenCV & OCR (Tesseract) – Image processing and text recognition

 Wi-Fi Module (ESP8266 with Pico W) – Cloud data storage

 LCD Display – Show detected number

 Blynk/Firebase Integration – Send detected plates to the cloud

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

109 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

CIRCUIT DIAGRAM:

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

110 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

PROGRAM:

import cv2

import pytesseract

import numpy as np

Set the path for Tesseract OCR

pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"

Load Haar Cascade for number plate detection

plate_cascade = cv2.CascadeClassifier("haarcascade_russian_plate_number.xml")

Initialize webcam

cap = cv2.VideoCapture(0)

while True:

 ret, frame = cap.read()

 if not ret:

 break

 # Convert to grayscale

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Detect number plates

 plates = plate_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4, minSize=(50,

50))

 for (x, y, w, h) in plates:

 # Draw a rectangle around the detected plate

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

 # Extract the plate region

 plate_roi = gray[y:y+h, x:x+w]

 # Image Preprocessing

 plate_roi = cv2.GaussianBlur(plate_roi, (5, 5), 0) # Reduce noise

 plate_roi = cv2.threshold(plate_roi, 0, 255, cv2.THRESH_BINARY +

cv2.THRESH_OTSU)[1] # Binarization

 plate_roi = cv2.resize(plate_roi, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #

Upscaling

 # Apply OCR to extract text

St. Anne’s CET ET3491 EMBEDDED SYSTEMS AND IOT DESIGN

111 | Prepared by Mr. S. BALABASKER, AP/ECE www.stannescet.ac.in

 text = pytesseract.image_to_string(plate_roi, config="--psm 7 --oem 3 -c

tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")

 text = text.strip().replace("\n", "").replace(" ", "")

 print("Detected Plate Number:", text)

 # Display the extracted text on the frame

 cv2.putText(frame, text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

 # Show the result

 cv2.imshow("Vehicle Number Plate Detection", frame)

 # Press 'q' to exit

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

Cleanup

cap.release()

cv2.destroyAllWindows()

Applications:

 Smart Parking & Toll Collection

 Traffic Law Enforcement

 Security and Surveillance Systems

	1.pdf (p.1-6)
	2.pdf (p.7-17)
	3.pdf (p.18-128)

